PHYSIOTHERAPY ASSESSMENT OF SWIMMERS

Cameron Elliott

SWIMMING IN AUSTRALIA

- Over 160,000 adults participate in organised swimming and with female participation rates (59.5%) higher than males (40.5%)
- Second in popularity as a recreational sporting activity only to walking.
- More than half of these people swim more than once a week and the likelihood of swimmers to participate in other sports is higher than almost any other sport.

- Australian Bureau of Statistics 2007

SWIMMING FAST

- Although fitness and strength are important parts of making a good swimmer, good technique and an ability to move smoothly through water is what often defines a great swimmer from a good swimmer.
- Using their hands/arms as anchors swimmers propel themselves forward by ‘grabbing’ onto the water like an anchor and pulling/pushing themselves over that anchor.
SNAPSHOT OF SWIMMING HISTORY

- The study of the mechanics of swimming was revolutionized by Counsilman (1971) with his experiment which led to the theory that propulsion in swimming was achieved using force generation principles that are similar to the effects of a hydrofoil, i.e. as the hand moves through the water, the water over the back of the hand and arm would flow faster than the water on the underside of the hand/forearm causing a pressure differential between these two areas—creating a 'lift' of the hand/forearm that creates a form of anchor in the water while the body's muscles pull the body over this anchor.

FORCES ACTING ON A SWIMMER

- Propulsion force:
 - Produced by the swimmer to move forward.
- Drag force:
 - Produced by the swimmer's interaction with the water, which slows the swimmer.
- Weight:
 - Forces of gravity pushing the swimmer into the water, which can increase drag force.
- Buoyancy:
 - (Bernoulli's principle) keeps the swimmer afloat, which can be used to reduce drag.

REDUCING DRAG

- The swimmer attempts to minimize drag by trying to maintain as streamlined a position of the body as possible. This position allows them to try to combat the effects of drag by interrupting the least amount of water flow as possible.
MUSCULAR SYSTEMS

WHICH SWIMMER HAS APPROPRIATE STABILITY?

CLINICAL IDEAS
- Like all activity, the swimming stroke is an integration of the whole kinetic chain. If any one ‘link’ in this chain does not perform effectively then another ‘joint’ link in the chain will compensate in its movement patterns.
- *Flexibility* is a key component to the elite swimmers body (eg: large amounts of internal rotation to gain the ‘high elbow’ in swimming). It can be tricky at times to know how much is too much but some ideas are offered in the talk.
- *Pathology* cannot be ignored (eg: does shoulder impingement pain result from irritated soft tissue structures (sub-acromial bursitis) or are other tendinopathies/partial tears present?
- Posterior capsule tightness commonly accepted to be a large contributor to shoulder overload injuries. Very common in swimming.

ABDUCTION WITH INTERNAL ROTATION
- A measure of the swimmers ability to achieve and maintain a high elbow throughout a stroke cycle.
- Best if done by two testers.
- Patient seated and facing away from the examiner.
- Abduct arms of swimmer while their elbows stay at 90° flexion.
- Test both shoulders to avoid lateral flexion of spine.
- Result of between 150° and 170° seems to be acceptable.

PREVIEW ONLY
These notes are a preview. Slides are limited. Full notes available after purchase from www.worldhealthwebinars.com.au
ABDUCTION WITH INTERNAL ROTATION

- Test for rotation movement through the body
- Patient seated (tall), hands clasped together and in line with the sternum
- Patient asked to rotate while keeping shoulder/arm/hand position unchanged.
- Result of 60˚ to 90˚ seems to be acceptable

THORACIC ROTATION

- **Prone:**
 - Patient prone with arm hanging off edge of table, elbow flexed to 90˚
 - Support upper arm with one hand and other hand is used to retract and stabilise shoulder girdle and hold. (This must be maintained at all times)
 - Swimmer asked to rotate arm so hand moves towards away from the physiotherapist ‘as far as you can’
 - Second person measures the line of the ulnar against vertical
 - An ideal measurement would be 40˚ to 50˚ of internal rotation
- **Supine:**
 - Patient supine with arm off edge of bed, elbow flexed to 90˚ and humerus supported
 - Similar cues to above, therapist can use hands to stabilise shoulder girdle and prevent protraction of the shoulder during test

GLENO-HUMERAL INTERNAL ROTATION

- **Prone:**
 - Patient prone with arm hanging off edge of table, elbow flexed to 90˚
 - Support upper arm with one hand and other hand is used to retract and stabilise shoulder girdle and hold. (This must be maintained at all times)
 - Swimmer asked to rotate arm so hand moves towards away from the physiotherapist ‘as far as you can’
 - Second person measures the line of the ulnar against vertical
 - An ideal measurement would be 40˚ to 50˚ of internal rotation
- **Supine:**
 - Patient supine with arm off edge of bed, elbow flexed to 90˚ and humerus supported
 - Similar cues to above, therapist can use hands to stabilise shoulder girdle and prevent protraction of the shoulder during test
GLENO-HUMERAL INTERNAL ROTATION

COMBINED ELEVATION
- Test of thoracic spine extension, shoulder elevation and the ability to draw the shoulders behind the body.
- Patient lies prone and in 'Streamline' position (elbows locked straight and thumbs held together).
- Patient asked to lift arms as high as they can while keeping their body in contact with the bed.
- Between 5° and 15° degrees seems acceptable.
COMBINED HIP INTERNAL ROTATION AND TIBIAL EXTERNAL ROTATION

- Test mainly for breastroke swimmers.
- Hips are tested in prone with knees together and legs allowed to fall apart, measure the line of the tibia compared to the vertical.
- Knees are tested with athlete sitting with hips and knees at 90˚ of bend. Ankle should be plantar grade (on floor is useful). Keep knees and ankles together and turn both feet out. The angle between the 2 positions is marked by a measurement from the centre of the heel fat pad through the 2nd toe.
- As a usual rule the addition of these results should be approx. 90˚

HIP EXTENSION

- Swimmer lies prone
- One examiner holds leg with 90˚ of knee flexion
- Examiner lifts leg slowly until movement is detected in the lumbar spine or in the pelvis
- Second examiner measures line of femur compared to horizontal
- 20˚ to 30˚ of extension seems to be ideal

ANKLE PLANTAR FLEXION

- Ask swimmer to point their toes and the angle between the line of the leg and the line of the toes is measured.
- Greater than 160˚ is ideal
ANKLE PLANTAR FLEXION

STRENGTH IMBALANCE

- Commonly found, usual pattern is a strength deficit in ER's compared to IR's
- Clinically strength can be measured as a 'break' test to gain a MVC value (with dynamometer) however repeat tests may show an early fatigue (Beach et al 1992)
- Strength ratio of Internal:External → 1.5:1 (Whiteley 2010)
- May not be present in the painful swimmer's shoulder – if so pay particular attention the results of the previously mentioned tests when clinically reasoning.

REFERENCES

- Humeral Torsion in the Throwing Arm of Handball Players, Hans Gerd Pieper, MD, PhD, Presented at the 2nd World Congress on Sports Trauma/22nd annual meeting of the AOSSM, Lake Buena Vista, Florida, June 1996

PREVIEW ONLY

These notes are a preview. Slides are limited.
Full notes available after purchase from www.worldhealthwebinars.com.au

Thank you

World Health Webinars
http://worldhealthwebinars.com.au

Coming up next

Exercise in Cancer Patients
Catherine Granger
Physiotherapist